A drone that mimics the way birds fold and flap their wings could improve the design of future unmanned autonomous vehicles, and could even help the machines withstand midair collisions.
Most winged animals have a wrist joint that enables the tips of their wings to fold in, allowing the animals to tuck their wings when navigating in and around tight spaces. This also helps prevent injuries from accidental collisions with branches or other animals' wings, because it lessens the force of the impact as the wing bends inwards.
Now, researchers at Stanford University have designed a 3D-printed hinge inspired by this wrist joint. The scientists incorporated the synthetic joint into the carbon fiber skeleton of a drone with flapping wings that are covered in a membrane-type film inspired by bats. [Biomimicry: 7 Clever Technologies Inspired by Nature]
When struck with a steel rod — to simulate the wing hitting a branch during flight — the researchers found that the tip of the wing absorbed the impact by folding inward. The wing also recovered quickly and unfolded back to its full span within one beat, thanks to centrifugal forces (those that draw a rotating body away from the center of rotation) induced by the flapping motion.
Full article/Source: Birds' Foldable Wings Could Inspire Nimble Drones
Most winged animals have a wrist joint that enables the tips of their wings to fold in, allowing the animals to tuck their wings when navigating in and around tight spaces. This also helps prevent injuries from accidental collisions with branches or other animals' wings, because it lessens the force of the impact as the wing bends inwards.
Now, researchers at Stanford University have designed a 3D-printed hinge inspired by this wrist joint. The scientists incorporated the synthetic joint into the carbon fiber skeleton of a drone with flapping wings that are covered in a membrane-type film inspired by bats. [Biomimicry: 7 Clever Technologies Inspired by Nature]
When struck with a steel rod — to simulate the wing hitting a branch during flight — the researchers found that the tip of the wing absorbed the impact by folding inward. The wing also recovered quickly and unfolded back to its full span within one beat, thanks to centrifugal forces (those that draw a rotating body away from the center of rotation) induced by the flapping motion.
Full article/Source: Birds' Foldable Wings Could Inspire Nimble Drones